Wednesday, August 11, 2010
Tuesday, August 10, 2010
The Jaguar system at Oak Ridge is lower than the Chinese Nebulae system.
Supercomputing speeds shot skyward in 2008 as Oak Ridge National Laboratory’s Cray XT5 Jaguar supercomputer attained a peak performance of 1.64 petaflops, a number that seemed astronomical only a few years ago. Supercomputing speeds shot skyward in 2008 as Oak Ridge National Laboratory’s Cray XT5 Jaguar supercomputer attained a peak performance of 1.64 petaflops, a number that seemed astronomical only a few years ago.
A Cray XT high-performance computing system at the Department of Energy’s (DOE) Oak Ridge National Laboratory is the world’s fastest supercomputer for science. The annual ranking of the world’s top 500 computers (www.top500.org) will be released Tuesday in Austin at an annual international supercomputing conference.
The Cray XT, called Jaguar, has a peak performance of 1.64 petaflops, (quadrillion floating point operations, or calculations) per second, incorporating 1.382 petaflops XT5 and 263 teraflops XT4 systems. Each component of the Jaguar system is separately ranked second and eighth on the current list of Top500 supercomputers in the world.
"This accomplishment is the culmination of our vision to regain leadership in high-performance computing and harness its potential for scientific investigation," said Undersecretary for Science Raymond L. Orbach. "I am especially gratified because we make this machine available to the entire scientific community through an open and transparent process that has resulted in spectacular scientific results ranging from the human brain to the global climate to the origins of the Universe."
Oak Ridge National Laboratory Director Thom Mason said the real value of the new machine will be measured by the scientific breakthroughs that will now be possible.
angiogenesis inhibitor
angiogenesis inhibitor is a substance that inhibits angiogenesis (the growth of new blood vessels). It can be endogenous or come from outside as drug or a dietary component. Every solid tumor (in contrast to liquid tumors like leukemia) needs to generate blood vessels to keep it alive once it reaches a certain size. Usually, blood vessels are not built elsewhere in an adult body unless tissue repair is actively in process. The angiostatic agent endostatin and related chemicals can suppress the building of blood vessels, preventing the cancer from growing indefinitely. In tests with patients, the tumor became inactive and stayed that way even after the endostatin treatment was finished. The treatment has very few side effects but appears to have very limited selectivity. Other angiostatic agents like thalidomide and natural plant-based substances are being actively investigated.